Reasoning with conditional plans in the presence of incomplete knowledge

Ron Petrick Fahiem Bacchus

Cognitive Robotics Group
University of Toronto

Presented at the ICAPS-03 Workshop on Planning under Uncertainty and Incomplete Knowledge in Trento, Italy (June 2003)
Motivation

- Planning with incomplete but accurate knowledge
- Reason at *plan time* about a plan’s effects and possible executions
 - Validate action preconditions
 - Ensure that a plan achieves goal conditions
- Work within the PKS framework
 ⇒ Planning with Knowledge and Sensing
Previous work: PKS

- Planning at the “knowledge level”
- Actions update the agent’s knowledge state, rather than the state of the world

Advantages
- Not a propositional representation (functions)
- Reasoning is “abstracted” \(\Rightarrow\) efficient algorithm

Disadvantages
- Representation restricts the types of knowledge that can be modelled
- Inference algorithm is sound but incomplete

\(\Rightarrow\) This work: extend PKS’s reasoning ability
Intuitions

- Example: bottle of liquid, healthy lawn
 - *pour-on-lawn*: if the liquid is poisonous then the lawn becomes dead
 - *sense-lawn*: sense whether lawn is dead or not

- Consider the action sequence:
 \[
 \langle \text{pour-on-lawn}, \text{sense-lawn} \rangle
 \]

- “Intuitive” conclusions
 - If the lawn is dead after execution: liquid is poisonous, liquid was *initially* poisonous
 - Prior to execution: come to know whether the liquid is poisonous (regardless of outcome)
Intuitions...

- How can we automate such inferences?
 - Inferences are intuitive but non-trivial
 - Conclusions don’t follow solely from action effects

- Markov assumption
 - Complete knowledge of action effects and *non-effects*
 - Agent’s actions are the only source of change in the world

⇒ Make use of this additional information to enhance PKS’s reasoning ability
Knowledge is represented by a set of 4 databases, each models a different type of knowledge.

Contents of databases have fixed translation to formulae in a modal logic of knowledge.

Given a set of four databases (DB)

\[\Rightarrow \] translation defines knowledge state (KB)
PKS: databases

- K_f: knowledge of positive and negative facts
 \[p(a), \neg q(b, c), f(a) = c, g(b, c) \neq d \]

- K_w: plan-time knowledge of sensing actions
 \[\phi \in K_w : \text{know } \phi \text{ or know } \neg \phi \text{ at execution} \]

- K_v: plan-time knowledge of function values
 \[f(\vec{x}) \in K_v : \text{know } f(\vec{x})'s \text{ value at execution} \]

- K_x: exclusive-or knowledge
 \[(l_1|l_2|\ldots|l_n) : \text{exactly one of the } l_i \text{ must be true} \]
<table>
<thead>
<tr>
<th>Action</th>
<th>Pre</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>pour-on-lawn</td>
<td></td>
<td>(\neg K(\neg \text{poisonous}) \Rightarrow) del(K_f, \neg \text{lawn-dead})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(K(\text{poisonous}) \Rightarrow) add(K_f, \text{lawn-dead})</td>
</tr>
<tr>
<td>sense-lawn</td>
<td></td>
<td>add(K_w, \text{lawn-dead})</td>
</tr>
</tbody>
</table>

- Actions update DB ⇒ update KB
- Inference algorithm examines database contents to evaluate preconditions and goals
PKS: conditional plans

- PKS generates plans by forward-chaining

![Diagram](attachment://pksgeneratedplan.png)

- Original PKS inference algorithm is unable to conclude anything about *poisonous* in this plan

- This work illustrates how PKS’s inference algorithm can be enhanced so that it is able to achieve know-whether knowledge of *poisonous*
1. Generate a conditional plan

\[\text{pour-on-lawn} \rightarrow \text{sense-lawn} \]

\[K_f: \neg \text{lawn-dead} \]

2. Form linearizations (possible execution branches)

\[\text{pour-on-lawn} \rightarrow \text{sense-lawn} \]

\[K_f: \neg \text{lawn-dead} \]

\[K_f: \text{lawn-dead} \]

\[K_f: \neg \text{lawn-dead} \]

3. Augment states by applying 4 new inference rules
Inference rule 1

- Action a cannot have changed the status of ϕ between W and W^+.

If a cannot make ϕ false (similarly, true) then if ϕ becomes newly known in W (W^+), make ϕ known in W^+ (W).
Action a cannot have changed the status of ϕ between W and W^+. If a cannot make ϕ false (similarly, true) then if ϕ becomes newly known in W (W^+), make ϕ known in W^+ (W).
Inference rule 1

Action a cannot have changed the status of ϕ between W and W^+.

If a cannot make ϕ false (similarly, true) then if ϕ becomes newly known in W (W^+), make ϕ known in W^+ (W).
Inference rule 1

- Action a cannot have changed the status of ϕ between W and W^+.

If a cannot make ϕ false (similarly, true) then if ϕ becomes newly known in W (W^+), make ϕ known in W^+ (W).
Inference rule 2

\[
\begin{align*}
\text{If } \phi \text{ becomes newly known in } W \text{ and } a \text{ has the conditional effect } \phi \rightarrow \psi, \text{ make } \psi \text{ known in } W^+.
\end{align*}
\]
\(\psi \) must be true in \(W^+ \) as either it was already true or \(a \) made it true.

If \(\phi \) becomes newly known in \(W \) and \(a \) has the conditional effect \(\phi \rightarrow \psi \), make \(\psi \) known in \(W^+ \).
Inference rule 3

Action a’s conditional effect was activated, so the antecedent of this effect must have been true.

If a has the conditional effect $\psi \rightarrow \phi$ and it becomes newly known that ϕ holds in W^+ and $\neg \phi$ holds in W, make ψ known in W.

\[W \xrightarrow{a : \psi \rightarrow \phi} W^+ \]
Action a’s conditional effect was activated, so the antecedent of this effect must have been true.

If a has the conditional effect $\psi \rightarrow \phi$ and it becomes newly known that ϕ holds in W^+ and $\neg\phi$ holds in W, make ψ known in W.
Action a’s conditional effect was not activated, so the antecedent of this effect must have been false.

If a has the conditional effect $\psi \rightarrow \phi$ and it becomes newly known that $\neg\phi$ holds in W^+, make $\neg\psi$ known in W.
Inference rule 4

- Action a’s conditional effect was not activated, so the antecedent of this effect must have been false.

If a has the conditional effect $\psi \rightarrow \phi$ and it becomes newly known that $\neg \phi$ holds in W^+, make $\neg \psi$ known in W.
Initiation and restrictions

- Start with states that result from branching on know-whether knowledge
- Apply rules recursively (i.e., stack-based)
- To achieve efficient implementation:
 - Restrict ϕ, ψ to literals, no free parameters
 - Actions cannot add or delete a fluent F with more than one conditional effect

\[b_1 \rightarrow F \\
\qquad b_2 \rightarrow F \Rightarrow b_1 \lor b_2 \]

\Rightarrow Avoid generating disjunctions
Example: poisonous liquid

$Kf: \neg \text{lawn-dead}$

pour-on-lawn \rightarrow sense-lawn \rightarrow

$pour-on-lawn$ \rightarrow $sense-lawn$ \rightarrow

$Kf: \neg \text{lawn-dead}$

$Kf: \text{lawn-dead}$
Example: poisonous liquid

\[
pour\text{-on}\text{-lawn} \rightarrow sense\text{-lawn} \\
Kf: \neg \text{lawn-dead} \quad Kf: \text{lawn-dead} \quad Kf: \text{lawn-dead}
\]

\[
pour\text{-on}\text{-lawn} \rightarrow sense\text{-lawn} \\
Kf: \neg \text{lawn-dead} \quad Kf: \neg \text{lawn-dead}
\]
Example: poisonous liquid

\[Kf \vdash \neg \text{lawn-dead} \quad Kf \vdash \text{lawn-dead} \quad Kf \vdash \text{lawn-dead} \]

\[Kf \vdash \text{poisonous} \]

\[Kf \vdash \neg \text{lawn-dead} \quad Kf \vdash \neg \text{lawn-dead} \]
Example: poisonous liquid

\[
\begin{align*}
\text{pour-on-lawn} & \quad \text{sense-lawn} \\
Kf: \neg \text{lawn-dead} & \quad Kf: \text{lawn-dead} & \quad Kf: \text{lawn-dead} \\
Kf: \text{poisonous} & \quad \text{Kf: poisonous} & \quad \text{Kf: poisonous} \\
\text{pour-on-lawn} & \quad \text{sense-lawn} \\
\text{Kf: } \neg \text{lawn-dead} & \quad \text{Kf: } \neg \text{lawn-dead} \\
\end{align*}
\]
Example: poisonous liquid

\[\text{pour-on-lawn} \rightarrow \text{sense-lawn} \]

\[Kf: \neg \text{lawn-dead} \quad Kf: \text{lawn-dead} \quad Kf: \text{lawn-dead}\]

\[Kf: \text{poisonous} \quad Kf: \text{poisonous} \quad Kf: \text{poisonous}\]
Example: poisonous liquid

1. Start with a poisonous liquid.
2. Pour the liquid on the lawn.
3. Sense the lawn.

- If the lawn is not dead, repeat step 2.
- If the lawn is dead, the liquid is poisonous.

Kf: ¬ lawn-dead Kf: lawn-dead Kf: lawn-dead
Kf: poisonous Kf: poisonous Kf: poisonous

Kf: ¬ lawn-dead Kf: ¬ lawn-dead
Example: poisonous liquid

pour-on-lawn sense-lawn

\(Kf: \neg \text{lawn-dead} \quad Kf: \text{lawn-dead} \quad Kf: \text{lawn-dead} \)

\(Kf: \text{poisonous} \quad Kf: \text{poisonous} \quad Kf: \text{poisonous} \)
Efficiency

- $O(nd^2)$ testings of the inference rules (worst case)
 - Conditional plan with n leaves, depth d
 - Rule evaluation has the same complexity as action application
- In practice, few effects applied at each state
Extensions to planning ability

- Plans previously rejected may now be proven to satisfy goal conditions.
- Potential to solve more complicated temporal goals conditions, expressed in terms of:
 - Final state (e.g., classical goals)
 - Initial state (e.g., restore goals)
 - Every state (e.g., “hands-off” goals)
- Note: PKS still employs blind search to find plans.
Example: UNIX domain

<table>
<thead>
<tr>
<th>Action</th>
<th>Pre</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>chmod+x(d)</td>
<td>K(dir(d))</td>
<td>add(K_f, exec(d))</td>
</tr>
<tr>
<td>chmod-x(d)</td>
<td>K(dir(d))</td>
<td>add(K_f, ¬exec(d))</td>
</tr>
<tr>
<td>cp(f, d)</td>
<td>K(file(f))</td>
<td>exec(d) ⇒ add(K_f, indir(f, d))</td>
</tr>
<tr>
<td></td>
<td>K(dir(d))</td>
<td>add(K_w, indir(f, d))</td>
</tr>
</tbody>
</table>

- Init: dir(icaps), file(paper.tex), ¬indir(paper.tex, icaps) ∈ K_f
- Goal: K(indir(paper.tex, icaps), restore(exec(icaps)))

PKS can solve this example in time < the resolution of the timer
Conclusions and future work

- Simple mechanism for reasoning about the knowledge effects of conditional plans
 \[\implies \text{a form of postdiction} \]
- Extensions allow PKS to solve more interesting range of problems, more complex goal conditions
- Future work
 - Function terms with unknown range
 - Progress/regress more complex formulae
 - Search control